顯示廣告
隱藏 ✕
※ 本文轉寄自 ptt.cc 更新時間: 2020-07-10 12:05:39
看板 car
作者 chandler0227 (錢德勒)
標題 Re: [新聞] 馬斯克:特斯拉已經非常接近 Level 5 完
時間 Fri Jul 10 09:16:06 2020



Scape: 有些人還拿那些Lv4載客服務的試驗車說嘴,表示根本看不懂07/09 17:21
Scape: 人家在做什麼。絕大多數的無人駕駛試驗車都是依靠昂貴的
Scape: 感應器跟安全人員去慢慢推進算法,用很慢的速度累積里程
Scape: Tesla早就放棄了這一套做法,路上有超過百萬輛Tesla跟他們
Scape: 蒐集大量的資訊,同時這些資訊到中心後提供Tesla做學習訓練
Scape: 然後改進,最後反饋到車主的車輛上用陰影模式大量的測試
Scape: 測試結果安全了、成功了才會放出來給車主使用。
Scape: 跟那些原型車拿牌照在路上跑根本不是一回事,竟然還有人
Scape: 拿這來反對,人家在做什麼事情,其本質就那麼難看懂?

Scape: 上百萬輛車在全世界各地供你用影子模式做測試,為何還要回07/09 17:29
Scape: 過頭去搞那些又貴數量又少的原型車?



就算有影子模式訓練,也絕對無法取代自駕車實際路試



自駕車路試的重點

1. 環境(號誌/他車/行人) -> 自駕電腦
感測器從環境收集數據,由自駕電腦運算和決策

2. 自駕車輛 -> 環境
自駕電腦的決策(例如變換車道),進而影響環境(他車/行人)

也就是說

不只環境會影響自駕決策/行為,自駕決策/行為也會影響到環境

被自駕決策/行為影響後的環境,又再進一步影響自駕決策/行為

影響並非單邊而是雙向溝通,且形成迴圏


因此也考驗自駕電腦即時(real time)運算的能力



Tesla所謂的影子模式本身只做到第1點

"已經蒐集好"的場景環境訓練自駕電腦

場景是不會變動的既定pattern

一旦自駕電腦做了任何跟原駕駛不同的決策

由於當下沒有實際行為(介入駕駛),因此自駕電腦的決策並沒有實際反饋到環境



所以就算Tesla數據量較Waymo龐大許多

但前者本質上仍然是AP和車主的駕駛數據

雖有大量數據供自駕電腦訓練,但自駕電腦決策和行為並不影響到數據

而後者則是由自駕電腦與環境實際互動的純自駕數據



並不是說影子模式沒有意義

但你說有了影子模式就不需要昂貴數量少的原型車上路試驗

標準外行講的話

--
--
※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 42.73.253.38 (臺灣)
※ 文章代碼(AID): #1V1y5RZq (car)
※ 文章網址: https://www.ptt.cc/bbs/car/M.1594343771.A.8F4.html
bmw530li: 實際來看也是阿,一堆數據結果還不是殺了一堆車主,全1F 07/10 09:23
bmw530li: 民公測,難怪教主不敢買(?
hanasiro: 學了理論就不用實際操作的概念3F 07/10 09:27
影子模式缺乏自駕電腦決策和行為如何影響到他車(因為場景已固定寫死)
舉人開車的例子就好,實際上路時和周遭其他駕駛一定是隨時互動和影響
一個駕駛行為可能就改變前後左右的車流

flexin: 劣幣還敢發文質疑涼B大師阿,這裡不歡迎劣幣,懂?4F 07/10 09:36
flexin: 我特萬歲\(._.)/
lay10521: 就是坐副駕看人開車 跟教練坐旁邊教你開車的差距?6F 07/10 09:43
你看著A開車,判斷哪裡應該煞車/加速或換車道
但那終究只是你的想法,你的想法並沒有改變A的駕駛行為
在沒改變當下A駕駛行為的前提下
你的想法不影響路上他車行為,也不會因他車被影響後產生的行為再進一步影響你判斷

CMLeeptt: 劣幣認證(蓋)7F 07/10 09:46
CMLeeptt: 涼幣好委屈
scelerisque: 所以輔助駕駛再怎麼訓練也只會是輔助駕駛9F 07/10 09:52
demo68: 那麼神特吹還是只吹不買啦~~~10F 07/10 09:56
Januvia: 教主就是不懂硬要裝懂的典範11F 07/10 09:59
flexin: 涼B大師搞不好持有不少我特的股票,早就財富自由了,所以12F 07/10 10:00
flexin: 才有那麼多時間上來發文教化汝等愚民。
gummybear01: 機械系 vs 數學系 電車專業對決14F 07/10 10:08
不是的,這屬於控制範疇
是環境影響自駕車決策,自駕車決策後的行為又影響環境
影子模式中任何自駕決策並沒有在當下feedback給環境
egban: 涼b又被打臉惹...15F 07/10 10:34
m996360: 為什麼有人喜歡大放厥詞被打臉 愛帶風向雙標又失敗XDDD16F 07/10 10:35
bill97385: 這樣說互動有點奇怪,因為實際上自駕系統就是要學習人17F 07/10 10:49
bill97385: 類的決策和駕駛行為,那電腦與環境的互動有很重要嗎?
駕駛人會依據環境做決策和行為,但駕駛人本身的行為也會影響環境呀
自駕系統學習人類決策和行為,但影子模式下自駕系統決策並沒有產生實際行為影響環境
環境->自駕系統單向的訓練 和 環境<->自駕系統雙向互動影響
兩者不相同

yaritai: 涼B是Google系吧!明明沒親用心得還能吹的跟神一樣,不愧19F 07/10 10:49
yaritai: 是鍵盤雲車手!好嘴好嘴。
bill97385: 例如,人看到障礙物,旁邊無車人決策都是閃避,旁邊有21F 07/10 10:52
bill97385: 車人的決策都是煞停,這樣決策策略似乎都是固定的
你講的是在固定場景下,自駕電腦該如何因應與決策
但場景是隨時會因自駕電腦決策和行為而變化
ex: 自駕車前方有障礙物,若自駕車有意圖切換車道,旁車可能會選擇減速禮讓

Rayearth2037: 涼B依舊google中23F 07/10 10:58
alumican: 不是吧 如果ai做了跟駕駛不一樣的決定,就要回去找為什24F 07/10 11:02
alumican: 麼;不然就跟放ai自己路試沒差
但不一定原駕駛人行為是對的呀
假設ai做了跟駕駛不一樣的決定,那這不一樣的決定又會如何改變周遭環境
這點無從得知,因為環境變動是已經錄好的pattern

soyghcg 
soyghcg: 有人就喜歡當子龍啊 花大錢幫人測試半成品26F 07/10 11:04
tonyatta: 因為這樣,有人做GTA的自駕,因為GTA是可以讓 控制系統27F 07/10 11:05
tonyatta: 實際控制車輛的
soyghcg 
soyghcg: 把半成品放上去給顧客用重新定義成潮 就有信仰買單了29F 07/10 11:06
soyghcg: 反正等新挑戰者把特斯拉M3比下去 扣除自駕M3根本不值那價
做自駕的也不是太樂觀,並非卡在技術
而是該如何商業化(現有技術成本過高),還有法規

soyghcg 
soyghcg: 造車品質還得練基本功31F 07/10 11:10
acman: 影子模式?接近Lv5?那先下放個高速下能辨識正前方靜止物的32F 07/10 11:11
acman: 功能給現有車主吧!先用行動震憾一下市場
lay10521: 如果決策固定 連學習都不用 直接寫死就好啦34F 07/10 11:12
soyghcg 
soyghcg: 有種方式就是上高速自動轉自駕系統35F 07/10 11:13
soyghcg: 配合車聯網與感測分配車速
soyghcg: 一般道路通行就由駕駛人開
dsa35197: tesla的想法 可能就是把全部可能的pattern都丟進去啊38F 07/10 11:15
影子模式下pattern是死的,自駕車怎樣的決策不影響周遭環境
路試下pattern隨時在變化,可能因自駕車某個行為而改變周遭環境

soyghcg 
soyghcg: 先解決一個主要效率場景 其他再說39F 07/10 11:16
yaritai: 涼B: 乾 這場遇到大魔王 這場我先裝死 明天開始洗板40F 07/10 11:17
soyghcg 
soyghcg: 想直接直上一步到位反而不可取41F 07/10 11:18
hondasho: 推~42F 07/10 11:19
hiphoprover: 但是特斯拉不就是把蒐集到的大數據再重新訓練後OTA43F 07/10 11:25
hiphoprover: 更新到車輛上再不斷的收集更多 pattern 訓練後再更新
因為自駕車更新後的決策是用到下次類似場景
所以當下是單方向影響

有興趣可以看MIT Rodney Brooks這篇
Unexpected Consequences of Self Driving Cars
https://rodneybrooks.com/unexpected-consequences-of-self-driving-cars/

hiphoprover: 嗎?在數據量(可能周遭路況也有記錄)極大的情況下45F 07/10 11:27
dslite: 目前cnn都用在辨識而已 決策有在用ai的嗎?感覺不大需要46F 07/10 11:27
hiphoprover: 不是一樣可以做到跟環境互動的意思?47F 07/10 11:27
影子模式下,電腦決策沒實際行為,所以不是影響"當下環境場景"
two way interaction (real time)

hiphoprover: 我自己包括很多車主的經驗是,如果常常介入修正AP路48F 07/10 11:28
hiphoprover: 線,多幾次之後也不用等OTA更新,AP會自動修正路線
hiphoprover: 主要是發生在過較大彎道路口的時候,前方沒車可以追
hanchueh: 特斯拉怎麼可能只有影子模式???51F 07/10 11:29
bill97385: 我的理解,影子模式應該是類似訓練模型中的驗證資料,52F 07/10 11:30
bill97385: 訓練目標就是與人類行為一致,而感覺談到環境互動已經
hanchueh: 每台車開啟AP的時候就是有實際跟環境在互動啊54F 07/10 11:30
bill97385: 是大系統的狀態,但是拆分下來其實是每一個決策所造成55F 07/10 11:30
hiphoprover: 所以AP很可能直接無預警切換到別條車道56F 07/10 11:30
bill97385: 的效應,所以感覺上不是在同樣的基準點討論57F 07/10 11:30
ewings: 數據再多,只有單方向的input而沒有互動,做出來的演算模58F 07/10 11:30
ewings: 型是很有問題的。就像三寶座在副駕駛座看到的路況,絕對和
ewings: 三寶自己握方向盤時不同。
hanchueh: 不然AP是怎麼對切入的車子做出反應的61F 07/10 11:31
hanchueh: 我實際遇到過交流道上來的兩台車分別切我的前方跟後方
hanchueh: 然後AP處理得很完美 完全沒有不舒服的頓挫
hanchueh: 這不是 two-way,什麼才是?
你講的是單向,環境場景影響車輛決策/行為
但車輛本身的行為也會影響到環境(他車),這點影子模式無法做到

Jeff911: 感覺車板都是特斯拉的RD,系統如何開發都瞭若指掌一樣65F 07/10 11:35
hanchueh: 特斯拉系統跟其他最大的不同就在於要做能應變未知狀況66F 07/10 11:36
ewings: 自動駕駛遇到別的車插入車道,那是單方向應對,那來的互動67F 07/10 11:36
ewings: 成分??
hanchueh: 的結果錢大完全講顛倒了69F 07/10 11:36
ewings: 所謂的互動,還包含其他車輛駕駛對自動駕駛車的行為,所做70F 07/10 11:36
ewings: 的反應。
hanchueh: 別的車插入車道 難道自身不用加減速來應變嗎?72F 07/10 11:36
hanchueh: 更何況如果前方車太慢 特斯拉還會自己往左切
m996360: 才剛放出來就來亂 XDDDDDD 我對你吹的"很完美"非常懷疑74F 07/10 11:37
hanchueh: 用超車道來超車75F 07/10 11:37
hanchueh: 自動超車難道不是會改變環境的行為嗎?
ewings: 一樣是三寶為例,駕駛行為呈現三寶狀態時,其他駕駛跟車或77F 07/10 11:39
ewings: 變換車道的方式,就會與看到非三寶時不同。
ewings: https://m.cnyes.com/news/id/4325168
ewings: 由這個新聞來看,特斯拉的超車離“完美”的距離,應該還有
ewings: 兩個三寶吧
demo68: hanchueh: 別的車插入車道 難道自身不用加減速來應變嗎?82F 07/10 11:41
demo68: 可以啊~特斯拉不是就是加速去A大車嗎? XD
※ 編輯: chandler0227 (42.73.253.38 臺灣), 07/10/2020 11:43:31
nthomas: 每次看涼幣被打臉好爽84F 07/10 11:45
hanchueh: 所以說特斯拉絕對不是只有影子模式85F 07/10 11:45
ewings: 特斯拉撞大貨車那起蠢事,單純是為了省錢沒使用具深度檢知86F 07/10 11:45
ewings: 的感應器。這種錯誤其實還比這種沒有雙向互動學習的case還
ewings: 要更低級
hanchueh: AP未啟動時收集影子數據 AP啟動時收集two-way數據89F 07/10 11:46
demo68: 標題  中國深圳有位特斯拉車主上網討拍90F 07/10 11:48
demo68: https://tinyurl.com/y8udsb8u
[圖]
demo68: 敢插我? 看誰硬RRRRRR92F 07/10 11:48
suitup: 我等教主回應 副教主看不上眼了93F 07/10 11:52
ewings: 自動駕駛車輛雙向互動的重要性,大到可以被5G行動通訊拿來94F 07/10 11:56
ewings: 當成主要的賣點。
lay10521: 宣傳很好聽 撞了就改口是輔助96F 07/10 11:58

--
※ 看板: Car 文章推薦值: 0 目前人氣: 0 累積人氣: 56 
作者 chandler0227 的最新發文:
點此顯示更多發文記錄
分享網址: 複製 已複製
r)回覆 e)編輯 d)刪除 M)收藏 ^x)轉錄 同主題: =)首篇 [)上篇 ])下篇